AI agents assisting in understanding of other AI systems| MIT News - ParrotGPT

Explaining the behavior of trained neural networks remains a compelling puzzle

especially as these models grow in size and sophistication. Like other scientific challenges throughout history, reverse-engineering how artificial intelligence systems work requires a substantial amount of experimentation: making hypotheses, intervening on behavior, and even dissecting large networks to examine individual neurons. To date, most successful experiments have involved large amounts of human oversight. Explaining every computation inside models the size of GPT-4 and larger will almost certainly require more automation — perhaps even using AI models themselves.

Facilitating this timely endeavor, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel approach that uses AI models to conduct experiments on other systems and explain their behavior. Their method uses agents built from pretrained language models to produce intuitive explanations of computations inside trained networks.

Central to this strategy is the automated interpretability agent (AIA), designed to mimic a scientist’s experimental processes. Interpretability agents plan and perform tests on other computational systems, which can range in scale from individual neurons to entire models, in order to produce explanations of these systems in a variety of forms: language descriptions of what a system does and where it fails, and code that reproduces the system’s behavior. Unlike existing interpretability procedures that passively classify or summarize examples, the AIA actively participates in hypothesis formation, experimental testing, and iterative learning, thereby refining its understanding of other systems in real time.

Complementing the AIA method is the new “function interpretation and description” (FIND) benchmark, a test bed of functions resembling computations inside trained networks, and accompanying descriptions of their behavior. One key challenge in evaluating the quality of descriptions of real-world network components is that descriptions are only as good as their explanatory power: Researchers don’t have access to ground-truth labels of units or descriptions of learned computations. FIND addresses this long-standing issue in the field by providing a reliable standard for evaluating interpretability procedures: explanations of functions (e.g., produced by an AIA) can be evaluated against function descriptions in the benchmark.

For example, FIND contains synthetic neurons designed to mimic the behavior of real neurons inside language models, some of which are selective for individual concepts such as “ground transportation.” AIAs are given black-box access to synthetic neurons and design inputs (such as “tree,” “happiness,” and “car”) to test a neuron’s response. After noticing that a synthetic neuron produces higher response values for “car” than other inputs, an AIA might design more fine-grained tests to distinguish the neuron’s selectivity for cars from other forms of transportation, such as planes and boats. When the AIA produces a description such as “this neuron is selective for road transportation, and not air or sea travel,” this description is evaluated against the ground-truth description of the synthetic neuron (“selective for ground transportation”) in FIND. The benchmark can then be used to compare the capabilities of AIAs to other methods in the literature.

Automating interpretability

Large language models are still holding their status as the in-demand celebrities of the tech world. The recent advancements in LLMs have highlighted their ability to perform complex reasoning tasks across diverse domains. The team at CSAIL recognized that given these capabilities, language models may be able to serve as backbones of generalized agents for automated interpretability. “Interpretability has historically been a very multifaceted field,” says Schwettmann. “There is no one-size-fits-all approach; most procedures are very specific to individual questions we might have about a system, and to individual modalities like vision or language. Existing approaches to labeling individual neurons inside vision models have required training specialized models on human data, where these models perform only this single task. Interpretability agents built from language models could provide a general interface for explaining other systems — synthesizing results across experiments, integrating over different modalities, even discovering new experimental techniques at a very fundamental level.”

The researchers are also developing a toolkit to augment the AIAs’ ability to conduct more precise experiments on neural networks, both in black-box and white-box settings. This toolkit aims to equip AIAs with better tools for selecting inputs and refining hypothesis-testing capabilities for more nuanced and accurate neural network analysis.

How ParrotGPT can help:

ParrotGPT can help by providing advanced AI Chatbot solutions for clients who need automated interpretability of neural networks and explanation of their behavior.

Leave a Reply

Your email address will not be published. Required fields are marked *